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Abstract

Wireless mesh networks (WMNs) have been 
extensively studied for nearly two decades as one 
of the most promising candidates expected to 
power the high-bandwidth, high-coverage wire-
less networks of the future. However, consum-
er demand for such networks has only recently 
caught up, rendering efforts at optimizing WMNs 
to support high capacities and offer high QoS, 
while being secure and fault-tolerant, more 
important than ever. To this end, a recent trend 
has been the application of machine learning 
(ML) to solve various design and management 
tasks related to WMNs. In this work, key ML 
techniques are discussed and past efforts apply-
ing them in WMNs are analyzed, while noting 
some existing issues and suggesting potential solu-
tions. Directions are provided on how ML could 
advance future research. Recent developments in 
the field are also examined.

Introduction
IEEE 802.11 (Wi-Fi) network access has become 
so ubiquitous in recent years that one expects 
such connectivity everywhere, whether at home, 
in the workplace, at a restaurant, or on a plane. 
Due to their poor coverage and low quality of 
service (QoS) guarantees, single access point 
(AP) networks have failed to meet increasing 
broadband service requirements, resulting in a 
demand for multi-AP networks called wireless 
mesh networks (WMNs). However, WMNs are 
not restricted to Wi-Fi — they are used with many 
other wireless technologies including IEEE 802.15 
(WPAN) and IEEE 802.16 (WiMAX).

A WMN generally consists of mesh gateways 
(MGs), mesh routers (MRs), mesh clients (MCs), 
and a set of wireless links among them. An MC 
can be regarded as a user device and is, in most 
cases, an endpoint of a flow of traffic through the 
network. The MCs are connected to a wireless 
backbone formed by the MRs. The MGs act as 
the points at which a WMN is connected to a 
wired infrastructure and, typically, to the Internet. 
Therefore, a network request originating at an 
MC would be transferred through its associated 
MR onto the wireless backbone, where it takes 
one or more hops to reach an MG before reach-
ing the Internet (and vice versa). 

Several factors affect the service (e.g., through-
put, delay) experienced by an MC in a WMN, such 
as interference from other signals and contention 

due to simultaneous transmissions, to name just 
a couple. To obtain a demanded level of service, 
various design challenges like channel allocation, 
routing, resource allocation, and deployment strat-
egy should be addressed, paying special attention 
to the intricacies that each problem entails.

Rule-based deterministic techniques that were 
initially introduced to solve these challenges pro-
duce satisfactory performance guarantees, but 
lack robustness in the face of an ever changing 
network environment [3, 8, 9]. Real-time optimi-
zation algorithms need to be adaptable to adjust 
themselves to recover from lost performance. 
Machine learning (ML) techniques are a fitting 
match to this description, as they can deduce 
the best decisions to be made by analyzing their 
growing database of past network statistics and 
performance data. 

The objective of ML is to improve the perfor-
mance of a system with a set of tasks by statis-
tically analyzing the data it has gathered during 
the execution of previous tasks. ML techniques 
have been typically classified as supervised, unsu-
pervised, and reinforcement learning [1, 15]. 
Supervised learning happens when the input data 
to a learner is already labeled with human-driv-
en guidance. The input data to an unsupervised 
learning agent is unlabeled, so the learner must 
identify features or patterns in the dataset to label 
the data by itself. Reinforcement learning (RL) is 
another type of ML technique where the learner 
perceives its environment to incrementally con-
duct actions that try to maximize the cumulative 
value of a reward given in response to previous 
actions. Unlike supervised learning, where pre-la-
beled data are input to a learner, the supervision 
in RL is a reward given after an action is taken.

There has been increasing interest in the appli-
cation of ML in wireless networks in general over 
the last decade [1], including in WMNs [3–14]. 
These attempts have been directed at optimiz-
ing various aspects of WMNs to improve user 
throughput, reduce end-to-end delay, or satisfy 
other QoS demands, while also trying to improve 
reliability and security. This article provides read-
ers with a comprehensive overview of the appli-
cation of different ML techniques in solving major 
functional design problems and handling manage-
ment-level tasks in WMNs. These techniques are 
classified and expounded on to accentuate the 
problems in WMNs that could characteristically 
be solved by them. Conclusions and future direc-
tions are given at the end.
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Applications of ML for  
Functional Design Problems in WMNs

When designing a WMN, various challenges 
determining the performance of the network 
need to be addressed; ML has aided in this by 
becoming an invaluable decision making tool. In 
each following subsection, a specific design prob-
lem is explored.

Routing

Routing is essentially deciding which route — 
among many possible ones — to take toward the 
destination at each intermediate MR along the path 
from source to destination. Historically, various 
routing metrics like expected transmission count 
(ETX), expected transmission time (ETT), and mes-
sage integrity check (MIC) were used for routing 
in WMNs; other approaches have used techniques 
like heuristic-based algorithms, linear programming 
(LP), combinatorial optimization, and even meta-
heuristics like simulated annealing (SA) [14].

RL is characterized by a system that learns to 
make optimal decisions from the knowledge gath-
ered by exploring its environment. At each step, 
it selects an action from a set of possible actions, 
and subsequently receives a reward from the 
environment corresponding to that action. Since 
the best such action is not known a priori, many 
different actions need to be tried out until the 
best action is learned (convergence). The learn-
ing agent can either select the best action so far 
(exploitation) or select an action randomly (explo-
ration). In most practical applications of RL, the 
learning agent is biased, since the time required 
to learn the best action by simply selecting an 
action randomly during exploration is too high. 
Such an RL agent is depicted in Fig. 2. The bias 
represents some domain-specific knowledge used 
to guide the learning agent toward convergence.

RL lends itself nicely to the routing problem, as 
in each routing decision, the possible next hops to 
take toward a destination could be taken as the 
set of possible actions in that state. These routes 
could then be tried out in a fashion similar to 
trial and error until the best route is learned (the 
bias, in this case, could simply be the elimination 
of a few theoretically ineffective routes). It has 
become common practice to perform the learn-
ing in a distributed fashion [3–5], where each MR 
learns the best routing decisions to be made for 
itself, without considering other MRs. RL-based 
models have been extensively used to tackle the 
routing problem [3–5].

Q-learning: In Q-learning [2], there is a Q-val-
ue Q(s, a) associated with performing action a 
at a state s that is updated each time that action 
is performed. At a given state, the action with 
the largest cumulative Q-value is considered the 
optimal action. Here, the compromise between 
exploration and exploitation may be made in dif-
ferent ways including simple greedy, e-greedy, 
and soft-max [2]. Simple greedy action selection 
always exploits current knowledge to maximize 
immediate reward without sampling apparently 
inferior actions. The e-greedy method behaves 
greedily most of the time, but with small proba-
bility e, it randomly selects an action from among 
all actions with equal probability, independent of 
their Q-value estimates. In contrast, the Softmax 

method utilizes calculated action-selection prob-
abilities to choose an action instead of picking an 
action at random. These probabilities are deter-
mined by ranking the Q-value estimates using a 
Boltzmann distribution.

The most common routing strategy is to guide 
(i.e., bias) the RL-agent by facilitating it to estimate 
the best path based on a rule-based mechanism 
using certain metrics or physical parameters. For 
example, in [3], the authors introduced a distrib-
uted algorithm called RLBDR where an RL-agent 
in each MR learns the best neighbor to send 
an incoming packet toward a given MG. While 
using an e-greedy Q-learning strategy, each MR 
also makes use of theoretical estimates of the 
best path to the given gateway by calculating a 
parameter called path quality (PQ) for each pos-
sible path. This represents bias in the RL scheme. 
They also compared RLBDR with other deter-
ministic routing schemes like MIX, ETX, nearest 
gateway routing, and gateway load-based routing 
[3]. RLBDR was shown to have much less mean 
delay and loss while providing significantly better 
throughput than all of these methods.

Learning Automata (LA): LA can also be clas-
sified as a type of RL: the environment of a single 
learning automaton can be described by a set of 
states S, a set of possible actions A, and a set of 
penalties (or rewards) R corresponding to each 
action. The automaton maintains a probability 
vector (ψ) which represents the probability that 
any action could be selected. Once an action is 
selected, if a penalty is received, the probabilities 
for all the other actions are increased and that 
for the selected action is decreased. One striking 
difference from Q-learning is that not only is the 
probability of the selected action affected in LA; 
every action is affected. LA are suited for distrib-
uted decision making in highly stochastic envi-
ronments. They have been used extensively for 
WMN optimization tasks [4, 5, 9].

LA are also used for routing problems in a dis-
tributed fashion similar to Q-learning where a learn-
ing automaton installed at each MR considers the 
set of next hops as A and the set of destinations 
as S, as illustrated in Fig. 4. A multicast routing pro-
tocol called Learning Automata Based Multicast 
Routing uses such LA installed on each interface of 
a node to build a multicast tree from minimal end-

Figure 1. The channel assignment problem in a typical WMN.
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to-end delay paths between the source and each 
multicast receiver [4]. Then the LA optimize the 
initial tree to get a minimal interference tree. In [5], 
another multicast routing algorithm called Distrib-
uted Learning Automata-Based Multicast Routing 
Algorithm is proposed. It shrinks the action set of 
an MR by constructing a minimum Steiner con-
nected dominating set iteratively, using LA distrib-
uted in each node. Also, the learned information is 
distributed among neighboring nodes to increase 
the convergence rate.

The delay of collecting feedback should be 
noted as one specific issue affecting the use of RL 
techniques like Q-learning and LA in WMN rout-
ing. In contrast to a design problem like channel 
allocation, routing decisions need to be made at 
a much greater frequency. Therefore, collecting 
feedback for each and every decision may not be 
feasible, primarily due to two reasons: 
1. Increased control overhead that might result 

in link congestion 
2. Delayed update of the database causing the 

approach to be less reactive (especially in 
highly dynamic environments)
One possible solution is to only give a sin-

gle collective reward for a batch of consecutive 
actions instead of one for each action. Although 
less granular, this has the added benefit of mitigat-
ing oversensitivity of the RL-agent due to transient 
changes in the environment. This mechanism is 
portrayed in Fig. 3.

Artificial Neural Networks (ANNs): ANNs 
[15] have been developed to mimic the operation 
of a human brain, mostly to aid in recognizing 
nonlinear relationships in datasets. An ANN usual-
ly consists of nodes called artificial neurons, which 
have connections between them known as edges. 
These edges typically have a weight that adjusts 
as learning proceeds. The weight is proportional 
to the strength of the signal at a connection. Each 
artificial neuron computes an output based on a 
nonlinear function of its inputs, which may origi-
nate from other nodes or be external inputs.

A multicast routing algorithm using a type of 
ANN called Cerebellar Model Articulation Con-

troller (CMAC) has been proposed to predict the 
probability of route and node disconnection (fail-
ures) to help select better routes [4]. The input 
space of the CMAC is quantized into discrete 
states called blocks, and memory cells will be 
associated with each state to store information 
(output) for that state. CMAC neural networks 
exhibit advantages like speedy learning and 
exceptional convergence properties. 

Channel Allocation

The channel allocation problem deals with allo-
cating channels to the wireless links among MRs 
in a WMN such that interference effects are min-
imized and channel utilization is maximized. For 
example, consider the scenario given in Fig. 1: 
four non-overlapping channels 36, 40, 44, and 48 
(in the 5 GHz band) should be assigned among 
the given links to avoid the possibility of:
1. Intra-flow interference (between links of the 

same flow)
2. Inter-flow interference (between links of 

adjacent flows)
Past work has modeled the channel assign-

ment problem as an edge coloring problem, 
vertex coloring problem, or max k-cut problem, 
solved using various techniques like heuristics, 
integer linear programming (ILP), and polynomi-
al-time approximation scheme (PTAS) [14].

A typical use case of LA for channel alloca-
tion installs an automaton at each MR (or at each 
radio of an MR in a multi-radio scenario). The set 
of actions A, in this case, is assigning each of the 
possible channels to the radio, while the state 
could be defined based on the current channel 
assignment. To this end, Leith and Clifford [6] pro-
posed a self-managed LA-based algorithm that 
does not require any communication between 
MRs. Each automaton maintains and updates 
a vector ψ, which contains a probability corre-
sponding to each channel that reflects its history 
of interference. If the current channel quality is 
above a certain threshold, the MR will continue 
to operate in it; otherwise, a channel is selected 
randomly based on the current value of ψ. They 
also theoretically proved that the convergence of 
their algorithm is guaranteed, provided that the 
channel assignment was feasible.

Bayesian Learning: Bayesian learning tries to 
calculate the posterior probability distribution of 
the target features of a testing object conditioned 
on its input features and the entire training data-
set. An example of an object could be a wireless 
channel, while its features could be measurement 
data on its signal, noise, and interference levels 
measured at a radio operating on that channel at 
a particular MR. Starting with some guesses about 
the probability of an event occurring (prior proba-
bility), what happens (likelihood) is observed, and 
depending on what happens, the initial guess is 
updated. Once updated, the prior probability is 
called posterior probability. Bayesian learning is 
well suited for occasions where there is a limited 
number of data points and when outliers need 
to be handled well. Examples include maximum 
likelihood estimation (MLE) and maximum a pos-
teriori estimation (MAP). MLE is a special case of 
MAP that uses a uniform prior distribution.

In the practical application of Bayesian mod-
els, Gibbs sampling provides a convenient way to 

Figure 2. Reinforcement learning: the biased RL 
mechanism.
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approximate posterior distributions. Assume we 
have random variables S = {s1, s2, …, sn}. We start 
from the initial values S(0) = {s1

(0), s2
(0), …, sn

(0)}, which 
can simply be taken from the prior distribution, and 
iteratively calculate S(t) from S(t–1) until sufficiently 
large t that makes S(t) appear as a sample of the 
true posterior distribution. The authors of [7] used 
this method by defining S as the set of states of the 
n MRs of a WMN, where each state Si represented 
the channel assigned to the ith MR. Their objective 
was to find a set of channels S(t) that minimized the 
total interference received by all MRs. For this, they 
defined an energy function on each node where 
the energy depends on the channel assignment to 
that node. Then a Gibbs sampling procedure was 
conducted by which the network converges to a 
collection of states with minimum global energy — 
the optimal channel assignment.

k-Means Clustering: k-means clustering [15] 
groups a set of unlabeled data consisting of 
n observations into a group of k clusters; each 
observation is assigned to the cluster to whose 
centroid it has the nearest Euclidean distance (the 
Euclidean distance is defined based on the fea-
tures of the observations). The centroid of each 
cluster can be used as its label and is usually 
defined as the mean of the data points within that 
cluster. The most common algorithm for k-means 
clustering uses an iterative refinement technique.

One specific potential application of this tech-
nique related to channel assignment should be 
highlighted. Several algorithms using rule-based 
procedures cluster nodes to several groups 
with the purpose of treating channel allocation 
in a divide and conquer fashion [14]. A typical 
approach would assign the same channel to radi-
os within the same cluster and present a meth-
odology to assign channels to radios on the 
boundary between clusters to achieve inter-clus-
ter connectivity. It is to be noted that k-means 
clustering could be used to intelligently cluster the 
set of MRs for this purpose. Most such approach-
es also require a cluster head to function; k-means 
clustering is naturally suited for this, as the cen-
troids of the generated clusters could be used for 
this purpose (or some variation of it).

Network Deployment

Network deployment typically deals with placing 
the MGs and MRs at locations that are optimal 
to achieve maximal network performance. Even 
though many other optimization problems like rout-
ing and channel assignment assume a pre-defined 
placement of these nodes, the performance of their 
ultimate outcome depends on the initial physical 
arrangement of nodes. For example, a typical prob-
lem is figuring out the minimum number of MGs 
and the ideal location for them to be placed.

Metaheuristic techniques like simulated anneal-
ing (SA), genetic algorithms (GAs), and particle 
swarm optimization (PSO) have virtually become 
the de facto standard for intelligently solving MR 
and MG placement problems in WMNs. How-
ever, it must be noted that RL techniques like 
Q-learning and LA may still be worth exploring 
in this regard. A recent attempt has been made 
successfully at solving the MR placement problem 
where the idea of balancing the fronthaul and 
backhaul throughput of an MR was employed 
as a strategy [8]. Semi-supervised support vec-

tor machines (S3VMs), which are a variation of 
support vector machines (SVMs) that support 
unlabeled data, were used to identify through-
put regions, while an exploration and exploitation 
strategy like RL was used as the learning strategy.

Rate Adaptation

A WMN must expect a number of different flows 
of traffic at any given moment (one of the primary 
objectives of a WMN is supporting a higher num-
ber of simultaneous users than a single AP net-
work). From the perspective of improving per-user 
throughput and fairness, it is vital that these trans-
missions between source-destination pairs hap-
pen concurrently. In conjunction with scheduling 
these different flows of traffic, the data rate at 
which they are transmitted is of importance as 
it ultimately impacts the inter-flow conflicts and 
hence throughput.

The rate adaptation problem also has char-
acteristics that make it naturally attractive for 
RL-based solutions: let us take the Stochastic 
Automatic Rate Adaptation Algorithm (SARA) 
[9], for example. It deploys a stochastic learning 
automaton (SLA) at each MC of the WMN. The 
set of states S here is the set of potential receiv-
ers for a given MC i, which can be any other 
node of the network (the MG, an MR, or anoth-
er MC). For each receiver j, the set of actions A 
is the set of possible transmission rates whereby 
data can be transmitted toward i from j. SARA 
sets equal probability for each rate in the begin-
ning, chooses a data rate to transmit according 
to the current probability, and updates the prob-
ability vector according to subsequent through-
put values achieved with respect to each rate. At 
convergence, the rate that provided the highest 
throughput will have the highest probability. In 
comparison with rule-based approaches like ARF 
and AARF, the throughput guarantees of SARA 
were shown to be far superior [9].

Joint Approaches

All the above design challenges are in fact 
sub-problems of the singular problem of design-
ing a WMN where all of them are optimized to 
coexist and, more importantly, complement each 
other. In a real-life WMN, solutions to these prob-

Table 1. Summary of WMN problems and corresponding ML techniques as 
solution tools.

WMN problem Objective ML techniques used

Routing
The path with lowest cost to direct traffic from a 

source to destination
ANN [4], Q-Learning 
[3], LA [5], MDP [10]

Channel assignment
Assigning channels to radio(s) of nodes while 

minimizing interference
Bayesian learning [7], 

LA [6]

Network deployment
Placement of MGs and MRs to meet network 

demands like coverage
SVM [8]

Rate adaptation
Rate at which data is transmitted between each 

pair of nodes
LA [9]

Joint approaches Solving multiple complementary problems MDP [10]

Anomaly and intrusion 
detection

Detecting and alerting users about possible 
attacks

DT [11], SVM [13]

Integrity and fault 
detection

Identification of faults and/or changes in the 
network

PCA [12]
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lems ultimately need to be used together, and 
even though they may perform well individually, 
they might act in detrimental ways to one anoth-
er when deployed together. For example, the 
physical arrangement of the network restricts the 
improvements that could be made with channel 
assignment, which together with power control 
determines the connectivity. Decreased connec-
tivity limits the number of possible routes in the 
network.

Markov Decision Process (MDP): An MDP [2] 
is just like a Markov chain, except the transition 
matrix depends on the action taken by the deci-
sion maker (agent) at each time step. The agent 
receives a reward, which depends on the action 
and the state. The goal is to find a function, called 
a policy, that specifies which action to take in 
each state, so as to maximize some function (e.g., 
the mean or expected discounted sum) of the 
sequence of rewards. One can formalize this in 
terms of Bellman’s equation, which can be solved 
iteratively using policy iteration. The unique fixed 
point of this equation is the optimal policy.

In [10], Zhang et al. proposed a joint admission 
control and routing protocol that provides QoS 
guarantees in WMNs based on IEEE 802.16. The 
problem was modeled as a semi-Markov decision 
process (SMDP) and solved using a linear program-
ming-based algorithm. The actions of the SMDP 
framework were whether or not to admit a user 
when a new or handoff connection request arrives, 
and to which route the incoming connection 
should be assigned. Multiple service classes were 
prioritized by imposing a different reward rate for 
each service class (service classes are defined in 
IEEE 802.16). The action chosen was based on the 
number of sessions of each class of traffic.

Applications of ML for Network 
Management in WMNs

When maintaining a WMN, it is critical to pay 
attention to certain management-level issues that 
may compromise the security, integrity, or expect-

ed performance level of the system. As network 
demands, computing protocols, and user expecta-
tions have become more and more complex over 
the years, ML has proved to be a vital instrument 
in developing tools to meet these challenges.

Anomaly/Intrusion Detection

Intrusion detection systems (IDSs) are used to 
alert users about possible attacks, ideally in time 
to stop an attack or mitigate the damage. They 
consist of three functions:
1. Event monitoring: The IDS must monitor 

some type of events and maintain the history 
of data related to these events.

2. Analysis engine: The IDS must be equipped 
with an analysis engine that processes the 
collected data to detect unusual or malicious 
behavior.

3. Response: The IDS must generate a 
response, which is typically an alert to sys-
tem administrators.
Decision Tree (DT): DTs are learning trees where 

the internal (non-leaf) nodes represent decision con-
ditions, and the leaf nodes represent a class or a 
feature of the input object (depending on whether 
a classification or a regression is being performed). 
By iterating down the tree, a final decision can be 
made. A number of different algorithms like Iterative 
Dichotomizer 3 (ID3) and its improved successor, 
C4.5, can be used to construct decision trees from 
class-labeled training tuples.

In [11], a cross-layer-based IDS is presented tht 
trains a normal profile from features collected from 
both the MAC layer and network layer. It includes 
four components: data collection, profile training, 
anomaly detection, and alert generation. Raw data-
sets are processed and loaded into the profile train-
ing module in which they used several classifiers 
like C4.5 (DT) and SVM (described below) for pat-
tern learning. Finally, any observed behavior that 
deviates significantly from the profile is considered 
an anomaly, and an alert is triggered. The authors 
showed that their cross-layer-based IDS has a high-
er detection rate and lower false alarm rate than a 
standard network-layer-based IDS across a number 
of anomaly models.

Support Vector Machines: In an SVM [15], 
each data point is represented as an n-dimension-
al vector, and the goal is to construct hyperplanes 
that best separate the set of data points into class-
es. The best separation can be defined in many 
ways, one being the hyperplane that maximizes 
the distance to the nearest data point of any class.

The authors of [13] developed an SVM-based 
IDS. First, packet delivery ratio, packet arrival 
interval, and end-to-end delay statistics are gath-
ered under normal and attack conditions. Then 
the normalized datasets corresponding to each 
of these features is input to the SVM to train the 
detection model. The trained model is then able 
to predict attack scenarios in test conditions; how-
ever, an alert threshold is set so as to minimize 
false positives before actually alerting the user in 
the response stage.

Integrity and Fault Detection

The inherent features of wireless communication 
such as interference, limited bandwidth, packet 
loss, dynamic obstacles, and propagation loss 
make WMNs unstable and somewhat unreliable 

Figure 3. Combating delayed feedback in RL using collective rewards.
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on certain occasions. As such, they may experi-
ence various failures (e.g., node or link failures), 
which may result in service interruption or deg-
radation of performance. Hence, it is crucial to 
develop methods that can monitor the network 
and identify faults accurately and descriptively so 
that they can be remedied quickly.

Principal Component Analysis (PCA): PCA 
[15] takes a set of data and tries to reduce it into 
several principal components (PCs), which is a 
set of linearly uncorrelated variables. These com-
ponents are ordered by the variance in the data 
that each component encapsulates, such that the 
first component has the highest variance. Being 
an exercise in finding maximal variance, prior nor-
malization of input data is of utmost importance 
in PCA. It has applications in any problem where 
the number of variables is too large for a com-
putationally feasible solution to be achieved and 
a smaller subset of those variables needs to be 
considered.

PCA has been used in the fault detection of 
WMNs in [12]. Here, they analyze the number of 
packets transmitted in l flows of data measured 
in p successive time intervals. After application 
of PCA on these flows, they are able to differen-
tiate flows with high variance (abnormal flows), 
and hence identify faults. By developing an iden-
tification scheme that involves reverse-mapping 
the derived principal components back into the 
measurement space, they were not only able to 
reduce the number of false alarms but also to pin-
point the nodes causing the actual anomalies.

Conclusions and Future Directions
An overview of different design and management 
problems in WMNs has been presented, along 
with how different ML techniques have been 
applied to address them, as summarized in Table 
I and Fig. 5. The emphasis is on portraying how 
different WMN problems are formally abstracted 
and transformed into an ML problem. Some issues 
facing current applications are also discussed and 
potential solutions presented, highlighting ways in 
which ML could potentially be applied in future 
WMN research.

From this overview, it may be clear that 
RL-related techniques have been responsible for 
a large portion of the research efforts aimed at 
utilizing ML in optimizing design problems of 
WMNs. However, promising RL techniques such 
as temporal difference learning, Dyna-Q, and pri-
oritized sweeping have been left unutilized in past 
research. These may provide better convergence 
guarantees and higher convergence rates than 
the already utilized methods like Q-learning and 
LA, which are very attractive features for a real-
time stochastic system like a WMN.

Emerging techniques like deep Learning (DL) 
have a huge potential toward WMN optimization. 
For example, in a problem like channel allocation, 
different metrics derived from measurable phys-
ical parameters have been used so far to evalu-
ate effects of overlapping channels. These metrics 
become even less useful in scenarios where mul-
tiple neighboring networks also interfere. It is 
more likely that the best metrics to evaluate such 
complex effects is nonlinear in nature and hard to 
deduce intuitively. Deep neural networks (DNNs), 
which are a common implementation of DL, are 

ideal for these types of nonlinear feature extraction 
tasks. As such, DNNs may be used, for example, to 
identify the features (metrics) that are best suited 
for consideration during channel assignment.

A note must also be made on cognitive radi-
os (CRs). CR is a concept where the radios in a 
wireless network (not necessarily a WMN) intel-
ligently manage and utilize the limited bandwidth 
spectrum. Although not all intelligent WMNs have 
CRs on them, CR-fortified WMNs can enable 
even existing intelligent optimization schemes to 
become better, and open the door to new ones. 
Therefore, future research should aim to realize 
the inherent symbiosis between these two tech-
nologies.
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