
IEEE Communications Magazine • April 2019102 0163-6804/19/$25.00 © 2019 IEEE

Abstract

Wireless mesh networks (WMNs) have been
extensively studied for nearly two decades as one
of the most promising candidates expected to
power the high-bandwidth, high-coverage wire-
less networks of the future. However, consum-
er demand for such networks has only recently
caught up, rendering efforts at optimizing WMNs
to support high capacities and offer high QoS,
while being secure and fault-tolerant, more
important than ever. To this end, a recent trend
has been the application of machine learning
(ML) to solve various design and management
tasks related to WMNs. In this work, key ML
techniques are discussed and past efforts apply-
ing them in WMNs are analyzed, while noting
some existing issues and suggesting potential solu-
tions. Directions are provided on how ML could
advance future research. Recent developments in
the field are also examined.

Introduction
IEEE 802.11 (Wi-Fi) network access has become
so ubiquitous in recent years that one expects
such connectivity everywhere, whether at home,
in the workplace, at a restaurant, or on a plane.
Due to their poor coverage and low quality of
service (QoS) guarantees, single access point
(AP) networks have failed to meet increasing
broadband service requirements, resulting in a
demand for multi-AP networks called wireless
mesh networks (WMNs). However, WMNs are
not restricted to Wi-Fi — they are used with many
other wireless technologies including IEEE 802.15
(WPAN) and IEEE 802.16 (WiMAX).

A WMN generally consists of mesh gateways
(MGs), mesh routers (MRs), mesh clients (MCs),
and a set of wireless links among them. An MC
can be regarded as a user device and is, in most
cases, an endpoint of a flow of traffic through the
network. The MCs are connected to a wireless
backbone formed by the MRs. The MGs act as
the points at which a WMN is connected to a
wired infrastructure and, typically, to the Internet.
Therefore, a network request originating at an
MC would be transferred through its associated
MR onto the wireless backbone, where it takes
one or more hops to reach an MG before reach-
ing the Internet (and vice versa).

Several factors affect the service (e.g., through-
put, delay) experienced by an MC in a WMN, such
as interference from other signals and contention

due to simultaneous transmissions, to name just
a couple. To obtain a demanded level of service,
various design challenges like channel allocation,
routing, resource allocation, and deployment strat-
egy should be addressed, paying special attention
to the intricacies that each problem entails.

Rule-based deterministic techniques that were
initially introduced to solve these challenges pro-
duce satisfactory performance guarantees, but
lack robustness in the face of an ever changing
network environment [3, 8, 9]. Real-time optimi-
zation algorithms need to be adaptable to adjust
themselves to recover from lost performance.
Machine learning (ML) techniques are a fitting
match to this description, as they can deduce
the best decisions to be made by analyzing their
growing database of past network statistics and
performance data.

The objective of ML is to improve the perfor-
mance of a system with a set of tasks by statis-
tically analyzing the data it has gathered during
the execution of previous tasks. ML techniques
have been typically classified as supervised, unsu-
pervised, and reinforcement learning [1, 15].
Supervised learning happens when the input data
to a learner is already labeled with human-driv-
en guidance. The input data to an unsupervised
learning agent is unlabeled, so the learner must
identify features or patterns in the dataset to label
the data by itself. Reinforcement learning (RL) is
another type of ML technique where the learner
perceives its environment to incrementally con-
duct actions that try to maximize the cumulative
value of a reward given in response to previous
actions. Unlike supervised learning, where pre-la-
beled data are input to a learner, the supervision
in RL is a reward given after an action is taken.

There has been increasing interest in the appli-
cation of ML in wireless networks in general over
the last decade [1], including in WMNs [3–14].
These attempts have been directed at optimiz-
ing various aspects of WMNs to improve user
throughput, reduce end-to-end delay, or satisfy
other QoS demands, while also trying to improve
reliability and security. This article provides read-
ers with a comprehensive overview of the appli-
cation of different ML techniques in solving major
functional design problems and handling manage-
ment-level tasks in WMNs. These techniques are
classified and expounded on to accentuate the
problems in WMNs that could characteristically
be solved by them. Conclusions and future direc-
tions are given at the end.

Samurdhi Karunaratne and Haris Gacanin

MOBILE COMMUNICATIONS AND NETWORKS

Wireless mesh networks
(WMNs) have been
extensively studied for
nearly two decades as
one of the most promis-
ing candidates expected
to power the high-band-
width, high-coverage
wireless networks of the
future. However, con-
sumer demand for such
networks has only recent-
ly caught up, rendering
efforts at optimizing
WMNs to support high
capacities and offer high
QoS, while being secure
and fault-tolerant, more
important than ever.

Samurdhi Karunaratne is with the University of Peradeniya; Haris Gacanin is with Nokia Bell Labs.
Digital Object Identifier:
10.1109/MCOM.2019.1800434

An Overview of Machine Learning
Approaches in Wireless Mesh Networks

IEEE Communications Magazine • April 2019 103

Applications of ML for
Functional Design Problems in WMNs

When designing a WMN, various challenges
determining the performance of the network
need to be addressed; ML has aided in this by
becoming an invaluable decision making tool. In
each following subsection, a specific design prob-
lem is explored.

Routing

Routing is essentially deciding which route —
among many possible ones — to take toward the
destination at each intermediate MR along the path
from source to destination. Historically, various
routing metrics like expected transmission count
(ETX), expected transmission time (ETT), and mes-
sage integrity check (MIC) were used for routing
in WMNs; other approaches have used techniques
like heuristic-based algorithms, linear programming
(LP), combinatorial optimization, and even meta-
heuristics like simulated annealing (SA) [14].

RL is characterized by a system that learns to
make optimal decisions from the knowledge gath-
ered by exploring its environment. At each step,
it selects an action from a set of possible actions,
and subsequently receives a reward from the
environment corresponding to that action. Since
the best such action is not known a priori, many
different actions need to be tried out until the
best action is learned (convergence). The learn-
ing agent can either select the best action so far
(exploitation) or select an action randomly (explo-
ration). In most practical applications of RL, the
learning agent is biased, since the time required
to learn the best action by simply selecting an
action randomly during exploration is too high.
Such an RL agent is depicted in Fig. 2. The bias
represents some domain-specific knowledge used
to guide the learning agent toward convergence.

RL lends itself nicely to the routing problem, as
in each routing decision, the possible next hops to
take toward a destination could be taken as the
set of possible actions in that state. These routes
could then be tried out in a fashion similar to
trial and error until the best route is learned (the
bias, in this case, could simply be the elimination
of a few theoretically ineffective routes). It has
become common practice to perform the learn-
ing in a distributed fashion [3–5], where each MR
learns the best routing decisions to be made for
itself, without considering other MRs. RL-based
models have been extensively used to tackle the
routing problem [3–5].

Q-learning: In Q-learning [2], there is a Q-val-
ue Q(s, a) associated with performing action a
at a state s that is updated each time that action
is performed. At a given state, the action with
the largest cumulative Q-value is considered the
optimal action. Here, the compromise between
exploration and exploitation may be made in dif-
ferent ways including simple greedy, e-greedy,
and soft-max [2]. Simple greedy action selection
always exploits current knowledge to maximize
immediate reward without sampling apparently
inferior actions. The e-greedy method behaves
greedily most of the time, but with small proba-
bility e, it randomly selects an action from among
all actions with equal probability, independent of
their Q-value estimates. In contrast, the Softmax

method utilizes calculated action-selection prob-
abilities to choose an action instead of picking an
action at random. These probabilities are deter-
mined by ranking the Q-value estimates using a
Boltzmann distribution.

The most common routing strategy is to guide
(i.e., bias) the RL-agent by facilitating it to estimate
the best path based on a rule-based mechanism
using certain metrics or physical parameters. For
example, in [3], the authors introduced a distrib-
uted algorithm called RLBDR where an RL-agent
in each MR learns the best neighbor to send
an incoming packet toward a given MG. While
using an e-greedy Q-learning strategy, each MR
also makes use of theoretical estimates of the
best path to the given gateway by calculating a
parameter called path quality (PQ) for each pos-
sible path. This represents bias in the RL scheme.
They also compared RLBDR with other deter-
ministic routing schemes like MIX, ETX, nearest
gateway routing, and gateway load-based routing
[3]. RLBDR was shown to have much less mean
delay and loss while providing significantly better
throughput than all of these methods.

Learning Automata (LA): LA can also be clas-
sified as a type of RL: the environment of a single
learning automaton can be described by a set of
states S, a set of possible actions A, and a set of
penalties (or rewards) R corresponding to each
action. The automaton maintains a probability
vector (ψ) which represents the probability that
any action could be selected. Once an action is
selected, if a penalty is received, the probabilities
for all the other actions are increased and that
for the selected action is decreased. One striking
difference from Q-learning is that not only is the
probability of the selected action affected in LA;
every action is affected. LA are suited for distrib-
uted decision making in highly stochastic envi-
ronments. They have been used extensively for
WMN optimization tasks [4, 5, 9].

LA are also used for routing problems in a dis-
tributed fashion similar to Q-learning where a learn-
ing automaton installed at each MR considers the
set of next hops as A and the set of destinations
as S, as illustrated in Fig. 4. A multicast routing pro-
tocol called Learning Automata Based Multicast
Routing uses such LA installed on each interface of
a node to build a multicast tree from minimal end-

Figure 1. The channel assignment problem in a typical WMN.

36

48

44

40

48

48

44

44
40

48

36

48

44

40

36
48

44

44
40

44

Intra-flow
interference

Inter-flow
interference

Node Wireless link

IEEE Communications Magazine • April 2019104

to-end delay paths between the source and each
multicast receiver [4]. Then the LA optimize the
initial tree to get a minimal interference tree. In [5],
another multicast routing algorithm called Distrib-
uted Learning Automata-Based Multicast Routing
Algorithm is proposed. It shrinks the action set of
an MR by constructing a minimum Steiner con-
nected dominating set iteratively, using LA distrib-
uted in each node. Also, the learned information is
distributed among neighboring nodes to increase
the convergence rate.

The delay of collecting feedback should be
noted as one specific issue affecting the use of RL
techniques like Q-learning and LA in WMN rout-
ing. In contrast to a design problem like channel
allocation, routing decisions need to be made at
a much greater frequency. Therefore, collecting
feedback for each and every decision may not be
feasible, primarily due to two reasons:
1. Increased control overhead that might result

in link congestion
2. Delayed update of the database causing the

approach to be less reactive (especially in
highly dynamic environments)
One possible solution is to only give a sin-

gle collective reward for a batch of consecutive
actions instead of one for each action. Although
less granular, this has the added benefit of mitigat-
ing oversensitivity of the RL-agent due to transient
changes in the environment. This mechanism is
portrayed in Fig. 3.

Artificial Neural Networks (ANNs): ANNs
[15] have been developed to mimic the operation
of a human brain, mostly to aid in recognizing
nonlinear relationships in datasets. An ANN usual-
ly consists of nodes called artificial neurons, which
have connections between them known as edges.
These edges typically have a weight that adjusts
as learning proceeds. The weight is proportional
to the strength of the signal at a connection. Each
artificial neuron computes an output based on a
nonlinear function of its inputs, which may origi-
nate from other nodes or be external inputs.

A multicast routing algorithm using a type of
ANN called Cerebellar Model Articulation Con-

troller (CMAC) has been proposed to predict the
probability of route and node disconnection (fail-
ures) to help select better routes [4]. The input
space of the CMAC is quantized into discrete
states called blocks, and memory cells will be
associated with each state to store information
(output) for that state. CMAC neural networks
exhibit advantages like speedy learning and
exceptional convergence properties.

Channel Allocation

The channel allocation problem deals with allo-
cating channels to the wireless links among MRs
in a WMN such that interference effects are min-
imized and channel utilization is maximized. For
example, consider the scenario given in Fig. 1:
four non-overlapping channels 36, 40, 44, and 48
(in the 5 GHz band) should be assigned among
the given links to avoid the possibility of:
1. Intra-flow interference (between links of the

same flow)
2. Inter-flow interference (between links of

adjacent flows)
Past work has modeled the channel assign-

ment problem as an edge coloring problem,
vertex coloring problem, or max k-cut problem,
solved using various techniques like heuristics,
integer linear programming (ILP), and polynomi-
al-time approximation scheme (PTAS) [14].

A typical use case of LA for channel alloca-
tion installs an automaton at each MR (or at each
radio of an MR in a multi-radio scenario). The set
of actions A, in this case, is assigning each of the
possible channels to the radio, while the state
could be defined based on the current channel
assignment. To this end, Leith and Clifford [6] pro-
posed a self-managed LA-based algorithm that
does not require any communication between
MRs. Each automaton maintains and updates
a vector ψ, which contains a probability corre-
sponding to each channel that reflects its history
of interference. If the current channel quality is
above a certain threshold, the MR will continue
to operate in it; otherwise, a channel is selected
randomly based on the current value of ψ. They
also theoretically proved that the convergence of
their algorithm is guaranteed, provided that the
channel assignment was feasible.

Bayesian Learning: Bayesian learning tries to
calculate the posterior probability distribution of
the target features of a testing object conditioned
on its input features and the entire training data-
set. An example of an object could be a wireless
channel, while its features could be measurement
data on its signal, noise, and interference levels
measured at a radio operating on that channel at
a particular MR. Starting with some guesses about
the probability of an event occurring (prior proba-
bility), what happens (likelihood) is observed, and
depending on what happens, the initial guess is
updated. Once updated, the prior probability is
called posterior probability. Bayesian learning is
well suited for occasions where there is a limited
number of data points and when outliers need
to be handled well. Examples include maximum
likelihood estimation (MLE) and maximum a pos-
teriori estimation (MAP). MLE is a special case of
MAP that uses a uniform prior distribution.

In the practical application of Bayesian mod-
els, Gibbs sampling provides a convenient way to

Figure 2. Reinforcement learning: the biased RL
mechanism.

Learning Policy

Learned knowledge

Environment

Knowledge for guidance

Learning agent

An ANN usually consists

of nodes called artificial

neurons, which have

connections between

them known as edges.

These edges typically

have a weight that

adjusts as learning

proceeds. The weight

is proportional to the

strength of the signal at

a connection. Each arti-

ficial neuron computes

an output based on a

nonlinear function of its

inputs, which may be

originating from other

nodes or be external

inputs.

IEEE Communications Magazine • April 2019 105

approximate posterior distributions. Assume we
have random variables S = {s1, s2, …, sn}. We start
from the initial values S(0) = {s1

(0), s2
(0), …, sn

(0)}, which
can simply be taken from the prior distribution, and
iteratively calculate S(t) from S(t–1) until sufficiently
large t that makes S(t) appear as a sample of the
true posterior distribution. The authors of [7] used
this method by defining S as the set of states of the
n MRs of a WMN, where each state Si represented
the channel assigned to the ith MR. Their objective
was to find a set of channels S(t) that minimized the
total interference received by all MRs. For this, they
defined an energy function on each node where
the energy depends on the channel assignment to
that node. Then a Gibbs sampling procedure was
conducted by which the network converges to a
collection of states with minimum global energy —
the optimal channel assignment.

k-Means Clustering: k-means clustering [15]
groups a set of unlabeled data consisting of
n observations into a group of k clusters; each
observation is assigned to the cluster to whose
centroid it has the nearest Euclidean distance (the
Euclidean distance is defined based on the fea-
tures of the observations). The centroid of each
cluster can be used as its label and is usually
defined as the mean of the data points within that
cluster. The most common algorithm for k-means
clustering uses an iterative refinement technique.

One specific potential application of this tech-
nique related to channel assignment should be
highlighted. Several algorithms using rule-based
procedures cluster nodes to several groups
with the purpose of treating channel allocation
in a divide and conquer fashion [14]. A typical
approach would assign the same channel to radi-
os within the same cluster and present a meth-
odology to assign channels to radios on the
boundary between clusters to achieve inter-clus-
ter connectivity. It is to be noted that k-means
clustering could be used to intelligently cluster the
set of MRs for this purpose. Most such approach-
es also require a cluster head to function; k-means
clustering is naturally suited for this, as the cen-
troids of the generated clusters could be used for
this purpose (or some variation of it).

Network Deployment

Network deployment typically deals with placing
the MGs and MRs at locations that are optimal
to achieve maximal network performance. Even
though many other optimization problems like rout-
ing and channel assignment assume a pre-defined
placement of these nodes, the performance of their
ultimate outcome depends on the initial physical
arrangement of nodes. For example, a typical prob-
lem is figuring out the minimum number of MGs
and the ideal location for them to be placed.

Metaheuristic techniques like simulated anneal-
ing (SA), genetic algorithms (GAs), and particle
swarm optimization (PSO) have virtually become
the de facto standard for intelligently solving MR
and MG placement problems in WMNs. How-
ever, it must be noted that RL techniques like
Q-learning and LA may still be worth exploring
in this regard. A recent attempt has been made
successfully at solving the MR placement problem
where the idea of balancing the fronthaul and
backhaul throughput of an MR was employed
as a strategy [8]. Semi-supervised support vec-

tor machines (S3VMs), which are a variation of
support vector machines (SVMs) that support
unlabeled data, were used to identify through-
put regions, while an exploration and exploitation
strategy like RL was used as the learning strategy.

Rate Adaptation

A WMN must expect a number of different flows
of traffic at any given moment (one of the primary
objectives of a WMN is supporting a higher num-
ber of simultaneous users than a single AP net-
work). From the perspective of improving per-user
throughput and fairness, it is vital that these trans-
missions between source-destination pairs hap-
pen concurrently. In conjunction with scheduling
these different flows of traffic, the data rate at
which they are transmitted is of importance as
it ultimately impacts the inter-flow conflicts and
hence throughput.

The rate adaptation problem also has char-
acteristics that make it naturally attractive for
RL-based solutions: let us take the Stochastic
Automatic Rate Adaptation Algorithm (SARA)
[9], for example. It deploys a stochastic learning
automaton (SLA) at each MC of the WMN. The
set of states S here is the set of potential receiv-
ers for a given MC i, which can be any other
node of the network (the MG, an MR, or anoth-
er MC). For each receiver j, the set of actions A
is the set of possible transmission rates whereby
data can be transmitted toward i from j. SARA
sets equal probability for each rate in the begin-
ning, chooses a data rate to transmit according
to the current probability, and updates the prob-
ability vector according to subsequent through-
put values achieved with respect to each rate. At
convergence, the rate that provided the highest
throughput will have the highest probability. In
comparison with rule-based approaches like ARF
and AARF, the throughput guarantees of SARA
were shown to be far superior [9].

Joint Approaches

All the above design challenges are in fact
sub-problems of the singular problem of design-
ing a WMN where all of them are optimized to
coexist and, more importantly, complement each
other. In a real-life WMN, solutions to these prob-

Table 1. Summary of WMN problems and corresponding ML techniques as
solution tools.

WMN problem Objective ML techniques used

Routing
The path with lowest cost to direct traffic from a

source to destination
ANN [4], Q-Learning
[3], LA [5], MDP [10]

Channel assignment
Assigning channels to radio(s) of nodes while

minimizing interference
Bayesian learning [7],

LA [6]

Network deployment
Placement of MGs and MRs to meet network

demands like coverage
SVM [8]

Rate adaptation
Rate at which data is transmitted between each

pair of nodes
LA [9]

Joint approaches Solving multiple complementary problems MDP [10]

Anomaly and intrusion
detection

Detecting and alerting users about possible
attacks

DT [11], SVM [13]

Integrity and fault
detection

Identification of faults and/or changes in the
network

PCA [12]

IEEE Communications Magazine • April 2019106

lems ultimately need to be used together, and
even though they may perform well individually,
they might act in detrimental ways to one anoth-
er when deployed together. For example, the
physical arrangement of the network restricts the
improvements that could be made with channel
assignment, which together with power control
determines the connectivity. Decreased connec-
tivity limits the number of possible routes in the
network.

Markov Decision Process (MDP): An MDP [2]
is just like a Markov chain, except the transition
matrix depends on the action taken by the deci-
sion maker (agent) at each time step. The agent
receives a reward, which depends on the action
and the state. The goal is to find a function, called
a policy, that specifies which action to take in
each state, so as to maximize some function (e.g.,
the mean or expected discounted sum) of the
sequence of rewards. One can formalize this in
terms of Bellman’s equation, which can be solved
iteratively using policy iteration. The unique fixed
point of this equation is the optimal policy.

In [10], Zhang et al. proposed a joint admission
control and routing protocol that provides QoS
guarantees in WMNs based on IEEE 802.16. The
problem was modeled as a semi-Markov decision
process (SMDP) and solved using a linear program-
ming-based algorithm. The actions of the SMDP
framework were whether or not to admit a user
when a new or handoff connection request arrives,
and to which route the incoming connection
should be assigned. Multiple service classes were
prioritized by imposing a different reward rate for
each service class (service classes are defined in
IEEE 802.16). The action chosen was based on the
number of sessions of each class of traffic.

Applications of ML for Network
Management in WMNs

When maintaining a WMN, it is critical to pay
attention to certain management-level issues that
may compromise the security, integrity, or expect-

ed performance level of the system. As network
demands, computing protocols, and user expecta-
tions have become more and more complex over
the years, ML has proved to be a vital instrument
in developing tools to meet these challenges.

Anomaly/Intrusion Detection

Intrusion detection systems (IDSs) are used to
alert users about possible attacks, ideally in time
to stop an attack or mitigate the damage. They
consist of three functions:
1. Event monitoring: The IDS must monitor

some type of events and maintain the history
of data related to these events.

2. Analysis engine: The IDS must be equipped
with an analysis engine that processes the
collected data to detect unusual or malicious
behavior.

3. Response: The IDS must generate a
response, which is typically an alert to sys-
tem administrators.
Decision Tree (DT): DTs are learning trees where

the internal (non-leaf) nodes represent decision con-
ditions, and the leaf nodes represent a class or a
feature of the input object (depending on whether
a classification or a regression is being performed).
By iterating down the tree, a final decision can be
made. A number of different algorithms like Iterative
Dichotomizer 3 (ID3) and its improved successor,
C4.5, can be used to construct decision trees from
class-labeled training tuples.

In [11], a cross-layer-based IDS is presented tht
trains a normal profile from features collected from
both the MAC layer and network layer. It includes
four components: data collection, profile training,
anomaly detection, and alert generation. Raw data-
sets are processed and loaded into the profile train-
ing module in which they used several classifiers
like C4.5 (DT) and SVM (described below) for pat-
tern learning. Finally, any observed behavior that
deviates significantly from the profile is considered
an anomaly, and an alert is triggered. The authors
showed that their cross-layer-based IDS has a high-
er detection rate and lower false alarm rate than a
standard network-layer-based IDS across a number
of anomaly models.

Support Vector Machines: In an SVM [15],
each data point is represented as an n-dimension-
al vector, and the goal is to construct hyperplanes
that best separate the set of data points into class-
es. The best separation can be defined in many
ways, one being the hyperplane that maximizes
the distance to the nearest data point of any class.

The authors of [13] developed an SVM-based
IDS. First, packet delivery ratio, packet arrival
interval, and end-to-end delay statistics are gath-
ered under normal and attack conditions. Then
the normalized datasets corresponding to each
of these features is input to the SVM to train the
detection model. The trained model is then able
to predict attack scenarios in test conditions; how-
ever, an alert threshold is set so as to minimize
false positives before actually alerting the user in
the response stage.

Integrity and Fault Detection

The inherent features of wireless communication
such as interference, limited bandwidth, packet
loss, dynamic obstacles, and propagation loss
make WMNs unstable and somewhat unreliable

Figure 3. Combating delayed feedback in RL using collective rewards.

f (a1)

f (a2)

f (a3)

f (a4)

F(a1, a2)

F(a3, a4)

a1r1

r2

R1

R2

r3

r4

a2

a3

a4

a1

a2

a3

a4

Collective reward

Individual reward

Environment ActionsRewards

IEEE Communications Magazine • April 2019 107

on certain occasions. As such, they may experi-
ence various failures (e.g., node or link failures),
which may result in service interruption or deg-
radation of performance. Hence, it is crucial to
develop methods that can monitor the network
and identify faults accurately and descriptively so
that they can be remedied quickly.

Principal Component Analysis (PCA): PCA
[15] takes a set of data and tries to reduce it into
several principal components (PCs), which is a
set of linearly uncorrelated variables. These com-
ponents are ordered by the variance in the data
that each component encapsulates, such that the
first component has the highest variance. Being
an exercise in finding maximal variance, prior nor-
malization of input data is of utmost importance
in PCA. It has applications in any problem where
the number of variables is too large for a com-
putationally feasible solution to be achieved and
a smaller subset of those variables needs to be
considered.

PCA has been used in the fault detection of
WMNs in [12]. Here, they analyze the number of
packets transmitted in l flows of data measured
in p successive time intervals. After application
of PCA on these flows, they are able to differen-
tiate flows with high variance (abnormal flows),
and hence identify faults. By developing an iden-
tification scheme that involves reverse-mapping
the derived principal components back into the
measurement space, they were not only able to
reduce the number of false alarms but also to pin-
point the nodes causing the actual anomalies.

Conclusions and Future Directions
An overview of different design and management
problems in WMNs has been presented, along
with how different ML techniques have been
applied to address them, as summarized in Table
I and Fig. 5. The emphasis is on portraying how
different WMN problems are formally abstracted
and transformed into an ML problem. Some issues
facing current applications are also discussed and
potential solutions presented, highlighting ways in
which ML could potentially be applied in future
WMN research.

From this overview, it may be clear that
RL-related techniques have been responsible for
a large portion of the research efforts aimed at
utilizing ML in optimizing design problems of
WMNs. However, promising RL techniques such
as temporal difference learning, Dyna-Q, and pri-
oritized sweeping have been left unutilized in past
research. These may provide better convergence
guarantees and higher convergence rates than
the already utilized methods like Q-learning and
LA, which are very attractive features for a real-
time stochastic system like a WMN.

Emerging techniques like deep Learning (DL)
have a huge potential toward WMN optimization.
For example, in a problem like channel allocation,
different metrics derived from measurable phys-
ical parameters have been used so far to evalu-
ate effects of overlapping channels. These metrics
become even less useful in scenarios where mul-
tiple neighboring networks also interfere. It is
more likely that the best metrics to evaluate such
complex effects is nonlinear in nature and hard to
deduce intuitively. Deep neural networks (DNNs),
which are a common implementation of DL, are

ideal for these types of nonlinear feature extraction
tasks. As such, DNNs may be used, for example, to
identify the features (metrics) that are best suited
for consideration during channel assignment.

A note must also be made on cognitive radi-
os (CRs). CR is a concept where the radios in a
wireless network (not necessarily a WMN) intel-
ligently manage and utilize the limited bandwidth
spectrum. Although not all intelligent WMNs have
CRs on them, CR-fortified WMNs can enable
even existing intelligent optimization schemes to
become better, and open the door to new ones.
Therefore, future research should aim to realize
the inherent symbiosis between these two tech-
nologies.

References
[1] C. Jiang et al., “Machine Learning Paradigms for Next-Gen-

eration Wireless Networks,” IEEE Wireless Commun., vol. 24,
no. 2, Apr. 2017, pp. 98–105.

[2] R. Sutton and A. Barto, Reinforcement Learning: An Introduc-
tion, MIT Press, 2012.

[3] M. Boushaba et al., “Reinforcement Learning Based Routing
in Wireless Mesh Networks”, Wireless Networks, vol. 19, no.
8, 2013, pp. 2079–91.

[4] M. Jahanshahi and A. B. Talebi, “Multicast Routing Protocols
in Wireless Mesh Networks: A Survey,” Computing, 2014,
pp. 1–29.

[5] J. A. Torkestani and M. R. Meybodi, “Weighted Steiner
Connected Dominating Set and Its Application to Multicast
Routing in Wireless MANETs,” Wireless Personal Commun.,
vol. 60, no. 2, Feb. 2010, pp. 145–69.

[6] D. J. Leith et al., “WLAN Channel Selection Without Commu-
nication”, Computer Networks, Jan. 2012.

[7] B. Kauffmann et al., “Measurement-Based Self Organization
of Interfering 802.11 Wireless Access Networks,” 26th IEEE
ICCC, Barcelona, Spain, 2007, pp. 1451–59.

[8] R. Atawia and H. Gacanin, “Self-Deployment of Future
Indoor Wi-Fi Networks: An Artificial Intelligence Approach,”
2017 GLOBECOM, Singapore, 2017, pp. 1–6.

Figure 4. Typical LA-based solution to the routing problem.

A

B

C

D

E

F

G

Actions (A)

Node of interest (Learning automaton)

Possible next
hops

Possible
destinations

States (S) {A,C,D,E,F,G}

{A,C,D,E}

Figure 5. Use of different ML techniques in selected WMN applications: R:
routing; CA: channel assignment; D: network deployment; RA: rate adapta-
tion; ID: intrusion detection; FD: fault detection.

Machine Learning in WMNs

Supervised Learning

SVM D, ID

ID

R

CA, RA

DT

k-Means CA

FD PCA

ANN

Q-learning R

R, CA, RA

R

LA

MDP

Bayesian

Unsupervised Learning Reinforcement Learning

IEEE Communications Magazine • April 2019108

[9] T. Joshi et al., “SARA: Stochastic Automata Rate Adaptation
for IEEE 802.11 Networks,” IEEE Trans. Parallel and Distribut-
ed Systems, vol. 19, no. 11, Nov. 2008, pp. 1579–90.

[10] S. Zhang, F. R. Yu and V. C. M. Leung, “Joint Connection
Admission Control and Routing in IEEE 802.16-Based Mesh
Networks,” IEEE Trans. Wireless Commun., vol. 9, no. 4, Apr.
2010, pp. 1370–79.

[11] X. Wang et al., “Cross-Layer Based Anomaly Detection
in Wireless Mesh Networks,” 9th Annual Int’l. Symp.
Applications and the Internet, Seattle, WA, 2009, pp.
9–15.

[12] S. Hakami et al., “Detection and Identification of Anom-
alies in Wireless Mesh Networks Using Principal Compo-
nent Analysis (PCA),” Int’l. Symp. Parallel Architectures,
Algorithms, and Networks, Sydney, Australia, 2008, pp.
266–71.

[13] E. A. Shams and A. Rizaner, “A Novel Support Vector
Machine Based Intrusion Detection System for Mobile Ad
Hoc Networks”, Wireless Networks, vol. 24, no. 5, July
2018, pp. 1821–29.

[14] P. H. Pathak and R. Dutta, “A Survey of Network Design
Problems and Joint Design Approaches in Wireless Mesh
Networks,” IEEE Commun. Surveys & Tutorials, vol. 13, no. 3,
3rd Quarter 2011, pp. 396–428.

[15] S. Shalev-Shwartz and S. Ben-David, Understanding
Machine Learning: From Theory to Algorithms, Cambridge
Univ. Press, 2014.

Biographies
Samurdhi Karunaratne (samurdhikaru@eng.pdn.ac.lk) is an
undergraduate student at the University of Peradeniya, Sri Lanka
expecting to graduate in 2019 with a B.Sc. in computer engineer-
ing. In 2017, he joined Nokia Bell Labs for a winter internship.

Haris Gačanin [SM] (haris.gacanin@nokia-bell-labs.com) received
a Ph.D. in 2008 from Tohoku University, Japan, where he was an
assistant professor until 2010. In 2010, he joined Alcatel-Lucent
(now Nokia), where he works as department head in Bell Labs.
His professional interest is design of autonomous communication
systems. He is a Senior Member of IEICE with 200+ publications.

